Experiences of using a Web-based Virtual Shell and Tube Heat Exchanger Experiment by Adult Continuing Learners

Dr Edmond Byrne¹, Mr. John Barrett¹, Mr. Tomáš Jiříček², Prof. Alan Kelly³ and Prof. Colm O'Sullivan⁴

¹Department of Process and Chemical Engineering, University College Cork, Republic of Ireland
²Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Czech Republic
³School of Food and Nutritional Sciences, University College Cork
⁴Department of Physics, University College Cork
Virtual laboratory experiments involve the use of technology, in particular computer technology, to simulate and/or replicate actual lab experiments. Edwin Link’s ‘link trainer’ flight simulator from 1928 with pneumatic and electrical instrumentation predates computers...
Two stage design of the virtual lab experiment

1. The design, construction, operation (data collection) and modelling of a lab scale model Shell & Tube Heat Exchanger (STHE) (Jiříček)

2. The development of an online virtual laboratory software interface (Barrett)
Two stage design of the virtual lab experiment

1. The design, construction, operation (data collection) and modelling of a lab scale model Shell & Tube Heat Exchanger (STHE) (Jiříček)

Polycarbonate replica model built to produce a 360° rotatable website image
Shell and tube heat exchanger design

Shell side: transparent polycarbonate
Tubes: stainless steel with helical static mixer elements
Experimental data collection

- Hot (tube side) inlet from heating bath: @ 35°C, 50°C, 65°C, 80°C
- Cold (shell side): mains water @ 18°C
- Flowrates: 1 kg/min - 5 kg/min
- Co-current and counter current configurations
- Data was collected from 360 successful experiments
Online software development
Application of online virtual laboratory

- Two year part-time evening Diploma in Process and Chemical Engineering @ University College Cork
- Heat Transfer and Applied Thermodynamics Module

- Laboratory complemented students’ exposure to STHE design in module
- Virtual and online nature of the laboratory particularly suitable for part-time learners;
 - easily used during night classes (and by a high number of users simultaneously) when real labs and support off limits
 - remote access available online outside of class time
- Students gathered experimental data in class (as with actual experiment), and began to construct spreadsheets from which relevant performance plots could be constructed and conclusions/reflections drawn
- Write up completed by the students remotely out of class as part of their continuous assessment (experimental procedure: see paper)
Inquiry

Questions on Virtual Laboratory

1. Did participants find the virtual laboratory user-friendly?
2. How did it aid understanding of the principles of heat exchanger design and operation relative to the lectures?
3. How did it aid understanding of the principles of heat exchanger design and operation compared with a real laboratory experiment?
4. Would learners actually prefer the virtual laboratory to a real lab experiment?

- A survey was developed and feedback obtained longitudinally among learners from 2009 to 2012
- Students also invited to provide qualitative feedback
Survey Results

On a scale of 1 to 5 (where 5 is maximum), please indicate the rating you would propose for each of the following.

<table>
<thead>
<tr>
<th>With respect to the Heat Exchanger Virtual Lab Experiment, how did you consider the following:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>User friendliness</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>Usefulness in gaining a better understanding of heat exchanger design and operation compared with lectures alone</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>17</td>
<td>20</td>
</tr>
<tr>
<td>Usefulness in gaining a better understanding of heat exchanger design and operation compared with a real laboratory experiment</td>
<td>-</td>
<td>1</td>
<td>10</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>In this module, to what degree would you prefer the HE VLE to a real lab experiment? (3 equals no preference)</td>
<td>-</td>
<td>5</td>
<td>11</td>
<td>13</td>
<td>9</td>
</tr>
</tbody>
</table>

83% response rate (38/46)
Qualitative Feedback

Qualitative feedback very supportive of the virtual lab experience:

• ‘Excellent tool. Gives better understanding of heat exchange.’

• ‘Very good that the program is online and I was able to finish the assignment at home.’

• ‘Extremely useful in demonstrating the principles of heat exchangers’

• ‘Being able to complete the experiment online means you can work on it at your own pace and you have access to it when it suits you. A real experiment may also be of benefit but I would choose the online version if I had to choose.’
Reflections

While showing impressive support for the online lab, the context (i.e. evening part-time students and associated constraints) should be noted.

The results also appear to reveal a degree of comfort among contemporary (adult) learners with using computers as simulators.

In Conclusion

This project has demonstrated that a well designed virtual laboratory experiment, when used in the right context, can offer significant benefits as a learning tool, even compared with real experiments.
The authors wish to acknowledge support for this project from the EU Leonardo da Vinci Community Vocational Training Action Programme, project SI-05-B-F-PP-176008 Computerised Laboratory (ComLab) in Science and Technology Teaching – PART 2.